外排序,当然在我看来,外排序考验的是一个程序员的架构能力,而不仅仅局限于排序这个层次。
我们知道算法中有一种叫做分治思想,一个大问题我们可以采取分而治之,各个突破,当子问题解决了,大问题也就KO了,还有一点我们知道
内排序的归并排序是采用二路归并的,因为分治后有LogN层,每层两路归并需要N的时候,最后复杂度为NlogN,那么外排序我们可以将这个“二”
扩大到M,也就是将一个大文件分成M个小文件,每个小文件是有序的,然后对应在内存中我们开M个优先队列,每个队列从对应编号的文件中读取
TopN条记录,然后我们从M路队列中各取一个数字进入中转站队列,并将该数字打上队列编号标记,当从中转站出来的最小数字就是我们最后要排
序的数字之一,因为该数字打上了队列编号,所以方便我们通知对应的编号队列继续出数字进入中转站队列,可以看出中转站一直保存了M个记录,
当中转站中的所有数字都出队完毕,则外排序结束。如果大家有点蒙的话,我再配合一张图,相信大家就会一目了然,这考验的是我们的架构能力。
图中这里有个Batch容器,这个容器我是基于性能考虑的,当batch=n时,我们定时刷新到文件中,保证内存有足够的空间。
这个基本没什么好说的,采用随机数生成n条记录。
#region 随机生成数据
/// <summary>
/// 随机生成数据
///<param name="max">执行生成的数据上线</param>
/// </summary>
public static void CreateData(int max)
{
var sw = new StreamWriter(Environment.CurrentDirectory + "//demo.txt");
for (int i = 0; i < max; i++)
{
Thread.Sleep(2);
var rand = new Random((int)DateTime.Now.Ticks).Next(0, int.MaxValue >> 3);
sw.WriteLine(rand);
}
sw.Close();
}
#endregion
根据实际情况我们来决定到底要分成多少个小文件,并且小文件的数据必须是有序的,小文件的个数也对应这内存中有多少个优先队列。
#region 将数据进行分份
/// <summary>
/// 将数据进行分份
/// <param name="size">每页要显示的条数</param>
/// </summary>
public static int Split(int size)
{
//文件总记录数
int totalCount = 0;
//每一份文件存放 size 条 记录
List<int> small = new List<int>();
var sr = new StreamReader((Environment.CurrentDirectory + "//demo.txt"));
var pageSize = size;
int pageCount = 0;
int pageIndex = 0;
while (true)
{
var line = sr.ReadLine();
if (!string.IsNullOrEmpty(line))
{
totalCount++;
//加入小集合中
small.Add(Convert.ToInt32(line));
//说明已经到达指定的 size 条数了
if (totalCount % pageSize == 0)
{
pageIndex = totalCount / pageSize;
small = small.OrderBy(i => i).Select(i => i).ToList();
File.WriteAllLines(Environment.CurrentDirectory + "//" + pageIndex + ".txt", small.Select(i => i.ToString()));
small.Clear();
}
}
else
{
//说明已经读完了,将剩余的small记录写入到文件中
pageCount = (int)Math.Ceiling((double)totalCount / pageSize);
small = small.OrderBy(i => i).Select(i => i).ToList();
File.WriteAllLines(Environment.CurrentDirectory + "//" + pageCount + ".txt", small.Select(i => i.ToString()));
break;
}
}
return pageCount;
}
#endregion
我们知道内存队列存放的只是小文件的topN条记录,当内存队列为空时,我们需要再次从小文件中读取下一批的TopN条数据,然后放入中转站
继续进行比较。
#region 将数据加入指定编号队列
/// <summary>
/// 将数据加入指定编号队列
/// </summary>
/// <param name="i">队列编号</param>
/// <param name="skip">文件中跳过的条数</param>
/// <param name="list"></param>
/// <param name="top">需要每次读取的条数</param>
public static void AddQueue(int i, List<PriorityQueue<int?>> list, ref int[] skip, int top = 100)
{
var result = File.ReadAllLines((Environment.CurrentDirectory + "//" + (i + 1) + ".txt"))
.Skip(skip[i]).Take(top).Select(j => Convert.ToInt32(j));
//加入到集合中
foreach (var item in result)
list[i].Eequeue(null, item);
//将个数累计到skip中,表示下次要跳过的记录数
skip[i] += result.Count();
}
#endregion
最后我们来测试一下:
数据量:short.MaxValue。
内存存放量:1200。
在这种场景下,我们决定每个文件放1000条,也就有33个小文件,也就有33个内存队列,每个队列取Top100条,Batch=500时刷新
硬盘,中转站存放33*2个数字(因为入中转站时打上了队列标记),最后内存活动最大总数为:sum=33*100+500+66=896<1200。
时间复杂度为N*logN。当然这个“阀值”,我们可以再仔细微调。
public static void Main()
{
//生成2^15数据
CreateData(short.MaxValue);
//每个文件存放1000条
var pageSize = 1000;
//达到batchCount就刷新记录
var batchCount = 0;
//判断需要开启的队列
var pageCount = Split(pageSize);
//内存限制:1500条
List<PriorityQueue<int?>> list = new List<PriorityQueue<int?>>();
//定义一个队列中转器
PriorityQueue<int?> queueControl = new PriorityQueue<int?>();
//定义每个队列完成状态
bool[] complete = new bool[pageCount];
//队列读取文件时应该跳过的记录数
int[] skip = new int[pageCount];
//是否所有都完成了
int allcomplete = 0;
//定义 10 个队列
for (int i = 0; i < pageCount; i++)
{
list.Add(new PriorityQueue<int?>());
//i: 记录当前的队列编码
//list: 队列数据
//skip:跳过的条数
AddQueue(i, list, ref skip);
}
//初始化操作,从每个队列中取出一条记录,并且在入队的过程中
//记录该数据所属的 “队列编号”
for (int i = 0; i < list.Count; i++)
{
var temp = list[i].Dequeue();
//i:队列编码,level:要排序的数据
queueControl.Eequeue(i, temp.level);
}
//默认500条写入一次文件
List<int> batch = new List<int>();
//记录下次应该从哪一个队列中提取数据
int nextIndex = 0;
while (queueControl.Count() > 0)
{
//从中转器中提取数据
var single = queueControl.Dequeue();
//记录下一个队列总应该出队的数据
nextIndex = single.t.Value;
var nextData = list[nextIndex].Dequeue();
//如果改对内弹出为null,则说明该队列已经,需要从nextIndex文件中读取数据
if (nextData == null)
{
//如果该队列没有全部读取完毕
if (!complete[nextIndex])
{
AddQueue(nextIndex, list, ref skip);
//如果从文件中读取还是没有,则说明改文件中已经没有数据了
if (list[nextIndex].Count() == 0)
{
complete[nextIndex] = true;
allcomplete++;
}
else
{
nextData = list[nextIndex].Dequeue();
}
}
}
//如果弹出的数不为空,则将该数入中转站
if (nextData != null)
{
//将要出队的数据 转入 中转站
queueControl.Eequeue(nextIndex, nextData.level);
}
batch.Add(single.level);
//如果batch=500,或者所有的文件都已经读取完毕,此时我们要批量刷入数据
if (batch.Count == batchCount || allcomplete == pageCount)
{
var sw = new StreamWriter(Environment.CurrentDirectory + "//result.txt", true);
foreach (var item in batch)
{
sw.WriteLine(item);
}
sw.Close();
batch.Clear();
}
}
Console.WriteLine("恭喜,外排序完毕!");
Console.Read();
}
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Diagnostics; using System.Threading; using System.IO; using System.Threading.Tasks; namespace ConsoleApplication2 { public class Program { public static void Main() { //生成2^15数据 CreateData(short.MaxValue); //每个文件存放1000条 var pageSize = 1000; //达到batchCount就刷新记录 var batchCount = 0; //判断需要开启的队列 var pageCount = Split(pageSize); //内存限制:1500条 List<PriorityQueue<int?>> list = new List<PriorityQueue<int?>>(); //定义一个队列中转器 PriorityQueue<int?> queueControl = new PriorityQueue<int?>(); //定义每个队列完成状态 bool[] complete = new bool[pageCount]; //队列读取文件时应该跳过的记录数 int[] skip = new int[pageCount]; //是否所有都完成了 int allcomplete = 0; //定义 10 个队列 for (int i = 0; i < pageCount; i++) { list.Add(new PriorityQueue<int?>()); //i: 记录当前的队列编码 //list: 队列数据 //skip:跳过的条数 AddQueue(i, list, ref skip); } //初始化操作,从每个队列中取出一条记录,并且在入队的过程中 //记录该数据所属的 “队列编号” for (int i = 0; i < list.Count; i++) { var temp = list[i].Dequeue(); //i:队列编码,level:要排序的数据 queueControl.Eequeue(i, temp.level); } //默认500条写入一次文件 List<int> batch = new List<int>(); //记录下次应该从哪一个队列中提取数据 int nextIndex = 0; while (queueControl.Count() > 0) { //从中转器中提取数据 var single = queueControl.Dequeue(); //记录下一个队列总应该出队的数据 nextIndex = single.t.Value; var nextData = list[nextIndex].Dequeue(); //如果改对内弹出为null,则说明该队列已经,需要从nextIndex文件中读取数据 if (nextData == null) { //如果该队列没有全部读取完毕 if (!complete[nextIndex]) { AddQueue(nextIndex, list, ref skip); //如果从文件中读取还是没有,则说明改文件中已经没有数据了 if (list[nextIndex].Count() == 0) { complete[nextIndex] = true; allcomplete++; } else { nextData = list[nextIndex].Dequeue(); } } } //如果弹出的数不为空,则将该数入中转站 if (nextData != null) { //将要出队的数据 转入 中转站 queueControl.Eequeue(nextIndex, nextData.level); } batch.Add(single.level); //如果batch=500,或者所有的文件都已经读取完毕,此时我们要批量刷入数据 if (batch.Count == batchCount || allcomplete == pageCount) { var sw = new StreamWriter(Environment.CurrentDirectory + "//result.txt", true); foreach (var item in batch) { sw.WriteLine(item); } sw.Close(); batch.Clear(); } } Console.WriteLine("恭喜,外排序完毕!"); Console.Read(); } #region 将数据加入指定编号队列 /// <summary> /// 将数据加入指定编号队列 /// </summary> /// <param name="i">队列编号</param> /// <param name="skip">文件中跳过的条数</param> /// <param name="list"></param> /// <param name="top">需要每次读取的条数</param> public static void AddQueue(int i, List<PriorityQueue<int?>> list, ref int[] skip, int top = 100) { var result = File.ReadAllLines((Environment.CurrentDirectory + "//" + (i + 1) + ".txt")) .Skip(skip[i]).Take(top).Select(j => Convert.ToInt32(j)); //加入到集合中 foreach (var item in result) list[i].Eequeue(null, item); //将个数累计到skip中,表示下次要跳过的记录数 skip[i] += result.Count(); } #endregion #region 随机生成数据 /// <summary> /// 随机生成数据 ///<param name="max">执行生成的数据上线</param> /// </summary> public static void CreateData(int max) { var sw = new StreamWriter(Environment.CurrentDirectory + "//demo.txt"); for (int i = 0; i < max; i++) { Thread.Sleep(2); var rand = new Random((int)DateTime.Now.Ticks).Next(0, int.MaxValue >> 3); sw.WriteLine(rand); } sw.Close(); } #endregion #region 将数据进行分份 /// <summary> /// 将数据进行分份 /// <param name="size">每页要显示的条数</param> /// </summary> public static int Split(int size) { //文件总记录数 int totalCount = 0; //每一份文件存放 size 条 记录 List<int> small = new List<int>(); var sr = new StreamReader((Environment.CurrentDirectory + "//demo.txt")); var pageSize = size; int pageCount = 0; int pageIndex = 0; while (true) { var line = sr.ReadLine(); if (!string.IsNullOrEmpty(line)) { totalCount++; //加入小集合中 small.Add(Convert.ToInt32(line)); //说明已经到达指定的 size 条数了 if (totalCount % pageSize == 0) { pageIndex = totalCount / pageSize; small = small.OrderBy(i => i).Select(i => i).ToList(); File.WriteAllLines(Environment.CurrentDirectory + "//" + pageIndex + ".txt", small.Select(i => i.ToString())); small.Clear(); } } else { //说明已经读完了,将剩余的small记录写入到文件中 pageCount = (int)Math.Ceiling((double)totalCount / pageSize); small = small.OrderBy(i => i).Select(i => i).ToList(); File.WriteAllLines(Environment.CurrentDirectory + "//" + pageCount + ".txt", small.Select(i => i.ToString())); break; } } return pageCount; } #endregion } }
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Diagnostics; using System.Threading; using System.IO; namespace ConsoleApplication2 { public class PriorityQueue<T> { /// <summary> /// 定义一个数组来存放节点 /// </summary> private List<HeapNode> nodeList = new List<HeapNode>(); #region 堆节点定义 /// <summary> /// 堆节点定义 /// </summary> public class HeapNode { /// <summary> /// 实体数据 /// </summary> public T t { get; set; } /// <summary> /// 优先级别 1-10个级别 (优先级别递增) /// </summary> public int level { get; set; } public HeapNode(T t, int level) { this.t = t; this.level = level; } public HeapNode() { } } #endregion #region 添加操作 /// <summary> /// 添加操作 /// </summary> public void Eequeue(T t, int level = 1) { //将当前节点追加到堆尾 nodeList.Add(new HeapNode(t, level)); //如果只有一个节点,则不需要进行筛操作 if (nodeList.Count == 1) return; //获取最后一个非叶子节点 int parent = nodeList.Count / 2 - 1; //堆调整 UpHeapAdjust(nodeList, parent); } #endregion #region 对堆进行上滤操作,使得满足堆性质 /// <summary> /// 对堆进行上滤操作,使得满足堆性质 /// </summary> /// <param name="nodeList"></param> /// <param name="index">非叶子节点的之后指针(这里要注意:我们 /// 的筛操作时针对非叶节点的) /// </param> public void UpHeapAdjust(List<HeapNode> nodeList, int parent) { while (parent >= 0) { //当前index节点的左孩子 var left = 2 * parent + 1; //当前index节点的右孩子 var right = left + 1; //parent子节点中最大的孩子节点,方便于parent进行比较 //默认为left节点 var min = left; //判断当前节点是否有右孩子 if (right < nodeList.Count) { //判断parent要比较的最大子节点 min = nodeList[left].level < nodeList[right].level ? left : right; } //如果parent节点大于它的某个子节点的话,此时筛操作 if (nodeList[parent].level > nodeList[min].level) { //子节点和父节点进行交换操作 var temp = nodeList[parent]; nodeList[parent] = nodeList[min]; nodeList[min] = temp; //继续进行更上一层的过滤 parent = (int)Math.Ceiling(parent / 2d) - 1; } else { break; } } } #endregion #region 优先队列的出队操作 /// <summary> /// 优先队列的出队操作 /// </summary> /// <returns></returns> public HeapNode Dequeue() { if (nodeList.Count == 0) return null; //出队列操作,弹出数据头元素 var pop = nodeList[0]; //用尾元素填充头元素 nodeList[0] = nodeList[nodeList.Count - 1]; //删除尾节点 nodeList.RemoveAt(nodeList.Count - 1); //然后从根节点下滤堆 DownHeapAdjust(nodeList, 0); return pop; } #endregion #region 对堆进行下滤操作,使得满足堆性质 /// <summary> /// 对堆进行下滤操作,使得满足堆性质 /// </summary> /// <param name="nodeList"></param> /// <param name="index">非叶子节点的之后指针(这里要注意:我们 /// 的筛操作时针对非叶节点的) /// </param> public void DownHeapAdjust(List<HeapNode> nodeList, int parent) { while (2 * parent + 1 < nodeList.Count) { //当前index节点的左孩子 var left = 2 * parent + 1; //当前index节点的右孩子 var right = left + 1; //parent子节点中最大的孩子节点,方便于parent进行比较 //默认为left节点 var min = left; //判断当前节点是否有右孩子 if (right < nodeList.Count) { //判断parent要比较的最大子节点 min = nodeList[left].level < nodeList[right].level ? left : right; } //如果parent节点小于它的某个子节点的话,此时筛操作 if (nodeList[parent].level > nodeList[min].level) { //子节点和父节点进行交换操作 var temp = nodeList[parent]; nodeList[parent] = nodeList[min]; nodeList[min] = temp; //继续进行更下一层的过滤 parent = min; } else { break; } } } #endregion #region 获取元素并下降到指定的level级别 /// <summary> /// 获取元素并下降到指定的level级别 /// </summary> /// <returns></returns> public HeapNode GetAndDownPriority(int level) { if (nodeList.Count == 0) return null; //获取头元素 var pop = nodeList[0]; //设置指定优先级(如果为 MinValue 则为 -- 操作) nodeList[0].level = level == int.MinValue ? --nodeList[0].level : level; //下滤堆 DownHeapAdjust(nodeList, 0); return nodeList[0]; } #endregion #region 获取元素并下降优先级 /// <summary> /// 获取元素并下降优先级 /// </summary> /// <returns></returns> public HeapNode GetAndDownPriority() { //下降一个优先级 return GetAndDownPriority(int.MinValue); } #endregion #region 返回当前优先队列中的元素个数 /// <summary> /// 返回当前优先队列中的元素个数 /// </summary> /// <returns></returns> public int Count() { return nodeList.Count; } #endregion } }