这些经典策略,当然有的问题我们可以用贪心来寻求整体最优解,在图论中一个典型的贪心法求最优解的例子就莫过于“最短路径”的问题。
从下图中我要寻找V0到V3的最短路径,你会发现通往他们的两点路径有很多:V0->V4->V3,V0->V1->V3,当然你会认为前者是你要找的最短
路径,那如果说图的顶点非常多,你还会这么轻易的找到吗?下面我们就要将刚才我们那点贪心的思维系统的整理下。
如果大家已经了解Prim算法,那么Dijkstra算法只是在它的上面延伸了下,其实也是很简单的。
这里有点不一样的地方就是我在边上面定义一个vertexs来记录贪心搜索到某一个节点时曾经走过的节点,比如从V0贪心搜索到V3时,我们V3
的vertexs可能存放着V0,V4,V3这些曾今走过的节点,或许最后这三个节点就是我们要寻找的最短路径。
首先我们分析下Dijkstra算法的步骤:
有集合M={V0,V1,V2,V3,V4}这样5个元素,我们用
TempVertex表示该顶点是否使用。
Weight表示该Path的权重(默认都为MaxValue)。
Path表示该顶点的总权重。
①. 从集合M中挑选顶点V0为起始点。给V0的所有邻接点赋值,要赋值的前提是要赋值的weight要小于原始的weight,并且排除已经访问过
的顶点,然后挑选当前最小的weight作为下一次贪心搜索的起点,就这样V0V1为挑选为最短路径,如图2。
②. 我们继续从V1这个顶点开始给邻接点以同样的方式赋值,最后我们发现V0V4为最短路径。也就是图3。
。。。
③. 最后所有顶点的最短路径就这样求出来了 。
总的代码:复杂度很烂O(N2)。。。
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Diagnostics; using System.Threading; using System.IO; using System.Threading.Tasks; namespace ConsoleApplication2 { public class Program { public static void Main() { Dictionary<int, string> dic = new Dictionary<int, string>(); MatrixGraph graph = new MatrixGraph(); graph.Build(); var result = graph.Dijkstra(); Console.WriteLine("各节点的最短路径为:"); foreach (var key in result.Keys) { Console.WriteLine("{0}", string.Join("->", result[key].vertexs)); } Console.Read(); } } #region 定义矩阵节点 /// <summary> /// 定义矩阵节点 /// </summary> public class MatrixGraph { Graph graph = new Graph(); public class Graph { /// <summary> /// 顶点信息 /// </summary> public int[] vertexs; /// <summary> /// 边的条数 /// </summary> public int[,] edges; /// <summary> /// 顶点个数 /// </summary> public int vertexsNum; /// <summary> /// 边的个数 /// </summary> public int edgesNum; } #region 矩阵的构建 /// <summary> /// 矩阵的构建 /// </summary> public void Build() { //顶点数 graph.vertexsNum = 5; //边数 graph.edgesNum = 6; graph.vertexs = new int[graph.vertexsNum]; graph.edges = new int[graph.vertexsNum, graph.vertexsNum]; //构建二维数组 for (int i = 0; i < graph.vertexsNum; i++) { //顶点 graph.vertexs[i] = i; for (int j = 0; j < graph.vertexsNum; j++) { graph.edges[i, j] = int.MaxValue; } } //定义 6 条边 graph.edges[0, 1] = graph.edges[1, 0] = 2; graph.edges[0, 2] = graph.edges[2, 0] = 5; graph.edges[0, 4] = graph.edges[4, 0] = 3; graph.edges[1, 3] = graph.edges[3, 1] = 4; graph.edges[2, 4] = graph.edges[4, 2] = 5; graph.edges[3, 4] = graph.edges[4, 3] = 2; } #endregion #region 边的信息 /// <summary> /// 边的信息 /// </summary> public class Edge { //开始边 public int startEdge; //结束边 public int endEdge; //权重 public int weight; //是否使用 public bool isUse; //累计顶点 public HashSet<int> vertexs = new HashSet<int>(); } #endregion #region Dijkstra算法 /// <summary> /// Dijkstra算法 /// </summary> public Dictionary<int, Edge> Dijkstra() { //收集顶点的相邻边 Dictionary<int, Edge> dic_edges = new Dictionary<int, Edge>(); //weight=MaxValue:标识没有边 for (int i = 0; i < graph.vertexsNum; i++) { //起始边 var startEdge = i; dic_edges.Add(startEdge, new Edge() { weight = int.MaxValue }); } //取第一个顶点 var start = 0; for (int i = 0; i < graph.vertexsNum; i++) { //标记该顶点已经使用过 dic_edges[start].isUse = true; for (int j = 1; j < graph.vertexsNum; j++) { var end = j; //取到相邻边的权重 var weight = graph.edges[start, end]; //赋较小的权重 if (weight < dic_edges[end].weight) { //与上一个顶点的权值累加 var totalweight = dic_edges[start].weight == int.MaxValue ? weight : dic_edges[start].weight + weight; if (totalweight < dic_edges[end].weight) { //将该顶点的相邻边加入到集合中 dic_edges[end] = new Edge() { startEdge = start, endEdge = end, weight = totalweight }; //将上一个边的节点的vertex累加 dic_edges[end].vertexs = new HashSet<int>(dic_edges[start].vertexs); dic_edges[end].vertexs.Add(start); dic_edges[end].vertexs.Add(end); } } } var min = int.MaxValue; //下一个进行比较的顶点 int minkey = 0; //取start邻接边中的最小值 foreach (var key in dic_edges.Keys) { //取当前 最小的 key(使用过的除外) if (min > dic_edges[key].weight && !dic_edges[key].isUse) { min = dic_edges[key].weight; minkey = key; } } //从邻接边的顶点再开始找 start = minkey; } return dic_edges; } #endregion } #endregion }