年代如果linq不支持并行计算那该是多么遗憾的事情啊。
当然linq有很多种方式,比如linq to sql ,xml,object 等等,如果要将linq做成并行还是很简单的,这里我就举一个比较实际一点的例子,
我们知道为了更快的响应用户操作,码农们想尽了各种办法,绞尽了脑汁,其中有一个办法就是将数据库数据预加载到内存中,然后通过各种
数据结构的手段来加速CURD,是的,比如一个排序地球人只能做到N(lgN),那么如果我还想再快一点的话该怎么办呢?那么现在的并行就能发
挥巨大的优势,尤其是现在的服务器配置都是在8个硬件线程的情况下,你简直会狂笑好几天啊,好,不乱扯了。
下面我们模拟给ConcurrentDictionary灌入1500w条记录,看看串行和并行效率上的差异,注意我的老爷机是2个硬件线程。
执行的结果还是比较震撼的,将近7倍,这是因为plinq的查询引擎会尽量利用cpu的所有硬件线程。
有时候我们并不是简单的select一下就ok了,可能需要将结果进行orderby操作,并行化引擎会把要遍历的数据分区,然后在每个区上进行
orderby操作,最后来一个总的orderby,这里很像算法中的“归并排序”。
<2> sum(),average()等等这些聚合函数的效果跟orderby类型一样,都是实现了类型归并排序的效果,这里就不举例子了。
3:指定并行度,这个我在前面文章也说过,为了不让并行计算占用全部的硬件线程,或许可能要留一个线程做其他事情。
var query2 = (from n in dic.Values.AsParallel() .WithDegreeOfParallelism(Environment.ProcessorCount - 1) where n.Age > 20 && n.Age < 25 orderby n.CreateTime descending select n).ToList();
首先这个类是Enumerable的并行版本,提供了很多用于查询实现的一组方法,截个图,大家看看是不是很熟悉,要记住,他们都是并行的。
下面列举几个简单的例子。
mapReduce是一个非常流行的编程模型,用于大规模数据集的并行计算,非常的牛X啊,记得mongodb中就用到了这个玩意。
map: 也就是“映射”操作,可以为每一个数据项建立一个键值对,映射完后会形成一个键值对的集合。
reduce:“化简”操作,我们对这些巨大的“键值对集合“进行分组,统计等等。
具体大家可以看看百科:http://baike.baidu.com/view/2902.htm
下面我举个例子,用Mapreduce来实现一个对age的分组统计。