这样说来的话,它就比Dictionary节省很多内存消耗,第二个是因为它和C#中的HashSet是一个等同类型,废话不多说,先看redis手册,如下:
上面就是redis中的set类型使用到的所有方法,还是老话,常用的方法也就那么四个(CURD)。。。
这个方法毫无疑问,就是向集合里面添加数据,比如下面这样,我往fruits集合里面添加喜爱的水果。
127.0.0.1:6379> sadd fruits apple (integer) 1 127.0.0.1:6379> sadd fruits banana (integer) 1 127.0.0.1:6379> smembers fruits 1) "banana" 2) "apple" 127.0.0.1:6379>
上面这个sadd你也看到了,我往集合里面成功添加了两个元素,现在你可能不满足这么简单的添加,你或许想知道set这个集合在redis底层是使用
什么来实现的,你可以用object encoding查看一下便知:
127.0.0.1:6379> object encoding fruits "hashtable" 127.0.0.1:6379>
看到了吧,是hashtable这个吊毛,现在闭上眼睛都能想到,肯定就是只用key的dictionary啦,对不对,如果你还有疑问的话,我还可以找到底层
代码给你看,好不啦???
有没有看到dictAdd方法,而其中的第三个参数正好是Null。。。对应着*val形参,你看牛叉不牛叉。。。然后我再带你看看dictAdd方法的定义。
好了,关于hashtable的实现理论,我在上一篇文章中也已经说过了,这里就不再赘叙了。
既然元素进来了,总不能不出来吧,这里的第一个SPOP:移除并返回集合中的一个随机元素,有一点奇怪的是,这种奇怪的方法其实在我们
C#中的HashSet并没有好办法解决,就比如”这个随机“就有点烦人了,下面这是我能想到的方法。
刚才随便插了一句话,下面我们继续SAdd,再SPop出来。
127.0.0.1:6379> sadd fruits pear (integer) 1 127.0.0.1:6379> sadd fruits grape (integer) 1 127.0.0.1:6379> sadd fruits chestnut (integer) 1 127.0.0.1:6379> smembers fruits 1) "grape" 2) "pear" 3) "banana" 4) "apple" 5) "chestnut" 127.0.0.1:6379> spop fruits "apple" 127.0.0.1:6379> spop fruits "chestnut" 127.0.0.1:6379> smembers fruits 1) "grape" 2) "pear" 3) "banana" 127.0.0.1:6379>
这个方法确实还是蛮好的,起码它是原子性操作,如果要我自己实现的话,起码还是要10行左右代码的。
既然说到了CURD,那怎么能少了D呢,它的功能定义就是:移除集合 key 中的一个或多个 member 元素,不存在的 member 元素会被忽略,
下面我随便举个例子,删除fruits中的pear。
127.0.0.1:6379> smembers fruits 1) "grape" 2) "pear" 3) "banana" 127.0.0.1:6379> srem fruits pear (integer) 1 127.0.0.1:6379> smembers fruits 1) "grape" 2) "banana" 127.0.0.1:6379>
好了,常用的操作就那么几个,是不是觉得好傻瓜哦。。。傻瓜就对了,方法是简单的,关键你需要了解这个方法底层是如何实现的,这样才能做到
心里有数,就比如Set函数,它的源代码全部都在 “t.set.c” 中。
/* * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "redis.h" /*----------------------------------------------------------------------------- * Set Commands *----------------------------------------------------------------------------*/ void sunionDiffGenericCommand(redisClient *c, robj **setkeys, int setnum, robj *dstkey, int op); /* Factory method to return a set that *can* hold "value". When the object has * an integer-encodable value, an intset will be returned. Otherwise a regular * hash table. */ robj *setTypeCreate(robj *value) { if (isObjectRepresentableAsLongLong(value,NULL) == REDIS_OK) return createIntsetObject(); return createSetObject(); } int setTypeAdd(robj *subject, robj *value) { long long llval; if (subject->encoding == REDIS_ENCODING_HT) { if (dictAdd(subject->ptr,value,NULL) == DICT_OK) { incrRefCount(value); return 1; } } else if (subject->encoding == REDIS_ENCODING_INTSET) { if (isObjectRepresentableAsLongLong(value,&llval) == REDIS_OK) { uint8_t success = 0; subject->ptr = intsetAdd(subject->ptr,llval,&success); if (success) { /* Convert to regular set when the intset contains * too many entries. */ if (intsetLen(subject->ptr) > server.set_max_intset_entries) setTypeConvert(subject,REDIS_ENCODING_HT); return 1; } } else { /* Failed to get integer from object, convert to regular set. */ setTypeConvert(subject,REDIS_ENCODING_HT); /* The set *was* an intset and this value is not integer * encodable, so dictAdd should always work. */ redisAssertWithInfo(NULL,value,dictAdd(subject->ptr,value,NULL) == DICT_OK); incrRefCount(value); return 1; } } else { redisPanic("Unknown set encoding"); } return 0; } int setTypeRemove(robj *setobj, robj *value) { long long llval; if (setobj->encoding == REDIS_ENCODING_HT) { if (dictDelete(setobj->ptr,value) == DICT_OK) { if (htNeedsResize(setobj->ptr)) dictResize(setobj->ptr); return 1; } } else if (setobj->encoding == REDIS_ENCODING_INTSET) { if (isObjectRepresentableAsLongLong(value,&llval) == REDIS_OK) { int success; setobj->ptr = intsetRemove(setobj->ptr,llval,&success); if (success) return 1; } } else { redisPanic("Unknown set encoding"); } return 0; } int setTypeIsMember(robj *subject, robj *value) { long long llval; if (subject->encoding == REDIS_ENCODING_HT) { return dictFind((dict*)subject->ptr,value) != NULL; } else if (subject->encoding == REDIS_ENCODING_INTSET) { if (isObjectRepresentableAsLongLong(value,&llval) == REDIS_OK) { return intsetFind((intset*)subject->ptr,llval); } } else { redisPanic("Unknown set encoding"); } return 0; } setTypeIterator *setTypeInitIterator(robj *subject) { setTypeIterator *si = zmalloc(sizeof(setTypeIterator)); si->subject = subject; si->encoding = subject->encoding; if (si->encoding == REDIS_ENCODING_HT) { si->di = dictGetIterator(subject->ptr); } else if (si->encoding == REDIS_ENCODING_INTSET) { si->ii = 0; } else { redisPanic("Unknown set encoding"); } return si; } void setTypeReleaseIterator(setTypeIterator *si) { if (si->encoding == REDIS_ENCODING_HT) dictReleaseIterator(si->di); zfree(si); } /* Move to the next entry in the set. Returns the object at the current * position. * * Since set elements can be internally be stored as redis objects or * simple arrays of integers, setTypeNext returns the encoding of the * set object you are iterating, and will populate the appropriate pointer * (eobj) or (llobj) accordingly. * * When there are no longer elements -1 is returned. * Returned objects ref count is not incremented, so this function is * copy on write friendly. */ int setTypeNext(setTypeIterator *si, robj **objele, int64_t *llele) { if (si->encoding == REDIS_ENCODING_HT) { dictEntry *de = dictNext(si->di); if (de == NULL) return -1; *objele = dictGetKey(de); } else if (si->encoding == REDIS_ENCODING_INTSET) { if (!intsetGet(si->subject->ptr,si->ii++,llele)) return -1; } return si->encoding; } /* The not copy on write friendly version but easy to use version * of setTypeNext() is setTypeNextObject(), returning new objects * or incrementing the ref count of returned objects. So if you don't * retain a pointer to this object you should call decrRefCount() against it. * * This function is the way to go for write operations where COW is not * an issue as the result will be anyway of incrementing the ref count. */ robj *setTypeNextObject(setTypeIterator *si) { int64_t intele; robj *objele; int encoding; encoding = setTypeNext(si,&objele,&intele); switch(encoding) { case -1: return NULL; case REDIS_ENCODING_INTSET: return createStringObjectFromLongLong(intele); case REDIS_ENCODING_HT: incrRefCount(objele); return objele; default: redisPanic("Unsupported encoding"); } return NULL; /* just to suppress warnings */ } /* Return random element from a non empty set. * The returned element can be a int64_t value if the set is encoded * as an "intset" blob of integers, or a redis object if the set * is a regular set. * * The caller provides both pointers to be populated with the right * object. The return value of the function is the object->encoding * field of the object and is used by the caller to check if the * int64_t pointer or the redis object pointer was populated. * * When an object is returned (the set was a real set) the ref count * of the object is not incremented so this function can be considered * copy on write friendly. */ int setTypeRandomElement(robj *setobj, robj **objele, int64_t *llele) { if (setobj->encoding == REDIS_ENCODING_HT) { dictEntry *de = dictGetRandomKey(setobj->ptr); *objele = dictGetKey(de); } else if (setobj->encoding == REDIS_ENCODING_INTSET) { *llele = intsetRandom(setobj->ptr); } else { redisPanic("Unknown set encoding"); } return setobj->encoding; } unsigned long setTypeSize(robj *subject) { if (subject->encoding == REDIS_ENCODING_HT) { return dictSize((dict*)subject->ptr); } else if (subject->encoding == REDIS_ENCODING_INTSET) { return intsetLen((intset*)subject->ptr); } else { redisPanic("Unknown set encoding"); } } /* Convert the set to specified encoding. The resulting dict (when converting * to a hash table) is presized to hold the number of elements in the original * set. */ void setTypeConvert(robj *setobj, int enc) { setTypeIterator *si; redisAssertWithInfo(NULL,setobj,setobj->type == REDIS_SET && setobj->encoding == REDIS_ENCODING_INTSET); if (enc == REDIS_ENCODING_HT) { int64_t intele; dict *d = dictCreate(&setDictType,NULL); robj *element; /* Presize the dict to avoid rehashing */ dictExpand(d,intsetLen(setobj->ptr)); /* To add the elements we extract integers and create redis objects */ si = setTypeInitIterator(setobj); while (setTypeNext(si,NULL,&intele) != -1) { element = createStringObjectFromLongLong(intele); redisAssertWithInfo(NULL,element,dictAdd(d,element,NULL) == DICT_OK); } setTypeReleaseIterator(si); setobj->encoding = REDIS_ENCODING_HT; zfree(setobj->ptr); setobj->ptr = d; } else { redisPanic("Unsupported set conversion"); } } void saddCommand(redisClient *c) { robj *set; int j, added = 0; set = lookupKeyWrite(c->db,c->argv[1]); if (set == NULL) { set = setTypeCreate(c->argv[2]); dbAdd(c->db,c->argv[1],set); } else { if (set->type != REDIS_SET) { addReply(c,shared.wrongtypeerr); return; } } for (j = 2; j < c->argc; j++) { c->argv[j] = tryObjectEncoding(c->argv[j]); if (setTypeAdd(set,c->argv[j])) added++; } if (added) { signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(REDIS_NOTIFY_SET,"sadd",c->argv[1],c->db->id); } server.dirty += added; addReplyLongLong(c,added); } void sremCommand(redisClient *c) { robj *set; int j, deleted = 0, keyremoved = 0; if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,set,REDIS_SET)) return; for (j = 2; j < c->argc; j++) { if (setTypeRemove(set,c->argv[j])) { deleted++; if (setTypeSize(set) == 0) { dbDelete(c->db,c->argv[1]); keyremoved = 1; break; } } } if (deleted) { signalModifiedKey(c->db,c->argv[1]); notifyKeyspaceEvent(REDIS_NOTIFY_SET,"srem",c->argv[1],c->db->id); if (keyremoved) notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",c->argv[1], c->db->id); server.dirty += deleted; } addReplyLongLong(c,deleted); } void smoveCommand(redisClient *c) { robj *srcset, *dstset, *ele; srcset = lookupKeyWrite(c->db,c->argv[1]); dstset = lookupKeyWrite(c->db,c->argv[2]); ele = c->argv[3] = tryObjectEncoding(c->argv[3]); /* If the source key does not exist return 0 */ if (srcset == NULL) { addReply(c,shared.czero); return; } /* If the source key has the wrong type, or the destination key * is set and has the wrong type, return with an error. */ if (checkType(c,srcset,REDIS_SET) || (dstset && checkType(c,dstset,REDIS_SET))) return; /* If srcset and dstset are equal, SMOVE is a no-op */ if (srcset == dstset) { addReply(c,setTypeIsMember(srcset,ele) ? shared.cone : shared.czero); return; } /* If the element cannot be removed from the src set, return 0. */ if (!setTypeRemove(srcset,ele)) { addReply(c,shared.czero); return; } notifyKeyspaceEvent(REDIS_NOTIFY_SET,"srem",c->argv[1],c->db->id); /* Remove the src set from the database when empty */ if (setTypeSize(srcset) == 0) { dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",c->argv[1],c->db->id); } signalModifiedKey(c->db,c->argv[1]); signalModifiedKey(c->db,c->argv[2]); server.dirty++; /* Create the destination set when it doesn't exist */ if (!dstset) { dstset = setTypeCreate(ele); dbAdd(c->db,c->argv[2],dstset); } /* An extra key has changed when ele was successfully added to dstset */ if (setTypeAdd(dstset,ele)) { server.dirty++; notifyKeyspaceEvent(REDIS_NOTIFY_SET,"sadd",c->argv[2],c->db->id); } addReply(c,shared.cone); } void sismemberCommand(redisClient *c) { robj *set; if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,set,REDIS_SET)) return; c->argv[2] = tryObjectEncoding(c->argv[2]); if (setTypeIsMember(set,c->argv[2])) addReply(c,shared.cone); else addReply(c,shared.czero); } void scardCommand(redisClient *c) { robj *o; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,REDIS_SET)) return; addReplyLongLong(c,setTypeSize(o)); } void spopCommand(redisClient *c) { robj *set, *ele, *aux; int64_t llele; int encoding; if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.nullbulk)) == NULL || checkType(c,set,REDIS_SET)) return; encoding = setTypeRandomElement(set,&ele,&llele); if (encoding == REDIS_ENCODING_INTSET) { ele = createStringObjectFromLongLong(llele); set->ptr = intsetRemove(set->ptr,llele,NULL); } else { incrRefCount(ele); setTypeRemove(set,ele); } notifyKeyspaceEvent(REDIS_NOTIFY_SET,"spop",c->argv[1],c->db->id); /* Replicate/AOF this command as an SREM operation */ aux = createStringObject("SREM",4); rewriteClientCommandVector(c,3,aux,c->argv[1],ele); decrRefCount(ele); decrRefCount(aux); addReplyBulk(c,ele); if (setTypeSize(set) == 0) { dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",c->argv[1],c->db->id); } signalModifiedKey(c->db,c->argv[1]); server.dirty++; } /* handle the "SRANDMEMBER key <count>" variant. The normal version of the * command is handled by the srandmemberCommand() function itself. */ /* How many times bigger should be the set compared to the requested size * for us to don't use the "remove elements" strategy? Read later in the * implementation for more info. */ #define SRANDMEMBER_SUB_STRATEGY_MUL 3 void srandmemberWithCountCommand(redisClient *c) { long l; unsigned long count, size; int uniq = 1; robj *set, *ele; int64_t llele; int encoding; dict *d; if (getLongFromObjectOrReply(c,c->argv[2],&l,NULL) != REDIS_OK) return; if (l >= 0) { count = (unsigned) l; } else { /* A negative count means: return the same elements multiple times * (i.e. don't remove the extracted element after every extraction). */ count = -l; uniq = 0; } if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptymultibulk)) == NULL || checkType(c,set,REDIS_SET)) return; size = setTypeSize(set); /* If count is zero, serve it ASAP to avoid special cases later. */ if (count == 0) { addReply(c,shared.emptymultibulk); return; } /* CASE 1: The count was negative, so the extraction method is just: * "return N random elements" sampling the whole set every time. * This case is trivial and can be served without auxiliary data * structures. */ if (!uniq) { addReplyMultiBulkLen(c,count); while(count--) { encoding = setTypeRandomElement(set,&ele,&llele); if (encoding == REDIS_ENCODING_INTSET) { addReplyBulkLongLong(c,llele); } else { addReplyBulk(c,ele); } } return; } /* CASE 2: * The number of requested elements is greater than the number of * elements inside the set: simply return the whole set. */ if (count >= size) { sunionDiffGenericCommand(c,c->argv+1,1,NULL,REDIS_OP_UNION); return; } /* For CASE 3 and CASE 4 we need an auxiliary dictionary. */ d = dictCreate(&setDictType,NULL); /* CASE 3: * The number of elements inside the set is not greater than * SRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements. * In this case we create a set from scratch with all the elements, and * subtract random elements to reach the requested number of elements. * * This is done because if the number of requsted elements is just * a bit less than the number of elements in the set, the natural approach * used into CASE 3 is highly inefficient. */ if (count*SRANDMEMBER_SUB_STRATEGY_MUL > size) { setTypeIterator *si; /* Add all the elements into the temporary dictionary. */ si = setTypeInitIterator(set); while((encoding = setTypeNext(si,&ele,&llele)) != -1) { int retval = DICT_ERR; if (encoding == REDIS_ENCODING_INTSET) { retval = dictAdd(d,createStringObjectFromLongLong(llele),NULL); } else { retval = dictAdd(d,dupStringObject(ele),NULL); } redisAssert(retval == DICT_OK); } setTypeReleaseIterator(si); redisAssert(dictSize(d) == size); /* Remove random elements to reach the right count. */ while(size > count) { dictEntry *de; de = dictGetRandomKey(d); dictDelete(d,dictGetKey(de)); size--; } } /* CASE 4: We have a big set compared to the requested number of elements. * In this case we can simply get random elements from the set and add * to the temporary set, trying to eventually get enough unique elements * to reach the specified count. */ else { unsigned long added = 0; while(added < count) { encoding = setTypeRandomElement(set,&ele,&llele); if (encoding == REDIS_ENCODING_INTSET) { ele = createStringObjectFromLongLong(llele); } else { ele = dupStringObject(ele); } /* Try to add the object to the dictionary. If it already exists * free it, otherwise increment the number of objects we have * in the result dictionary. */ if (dictAdd(d,ele,NULL) == DICT_OK) added++; else decrRefCount(ele); } } /* CASE 3 & 4: send the result to the user. */ { dictIterator *di; dictEntry *de; addReplyMultiBulkLen(c,count); di = dictGetIterator(d); while((de = dictNext(di)) != NULL) addReplyBulk(c,dictGetKey(de)); dictReleaseIterator(di); dictRelease(d); } } void srandmemberCommand(redisClient *c) { robj *set, *ele; int64_t llele; int encoding; if (c->argc == 3) { srandmemberWithCountCommand(c); return; } else if (c->argc > 3) { addReply(c,shared.syntaxerr); return; } if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.nullbulk)) == NULL || checkType(c,set,REDIS_SET)) return; encoding = setTypeRandomElement(set,&ele,&llele); if (encoding == REDIS_ENCODING_INTSET) { addReplyBulkLongLong(c,llele); } else { addReplyBulk(c,ele); } } int qsortCompareSetsByCardinality(const void *s1, const void *s2) { return setTypeSize(*(robj**)s1)-setTypeSize(*(robj**)s2); } /* This is used by SDIFF and in this case we can receive NULL that should * be handled as empty sets. */ int qsortCompareSetsByRevCardinality(const void *s1, const void *s2) { robj *o1 = *(robj**)s1, *o2 = *(robj**)s2; return (o2 ? setTypeSize(o2) : 0) - (o1 ? setTypeSize(o1) : 0); } void sinterGenericCommand(redisClient *c, robj **setkeys, unsigned long setnum, robj *dstkey) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *eleobj, *dstset = NULL; int64_t intobj; void *replylen = NULL; unsigned long j, cardinality = 0; int encoding; for (j = 0; j < setnum; j++) { robj *setobj = dstkey ? lookupKeyWrite(c->db,setkeys[j]) : lookupKeyRead(c->db,setkeys[j]); if (!setobj) { zfree(sets); if (dstkey) { if (dbDelete(c->db,dstkey)) { signalModifiedKey(c->db,dstkey); server.dirty++; } addReply(c,shared.czero); } else { addReply(c,shared.emptymultibulk); } return; } if (checkType(c,setobj,REDIS_SET)) { zfree(sets); return; } sets[j] = setobj; } /* Sort sets from the smallest to largest, this will improve our * algorithm's performance */ qsort(sets,setnum,sizeof(robj*),qsortCompareSetsByCardinality); /* The first thing we should output is the total number of elements... * since this is a multi-bulk write, but at this stage we don't know * the intersection set size, so we use a trick, append an empty object * to the output list and save the pointer to later modify it with the * right length */ if (!dstkey) { replylen = addDeferredMultiBulkLength(c); } else { /* If we have a target key where to store the resulting set * create this key with an empty set inside */ dstset = createIntsetObject(); } /* Iterate all the elements of the first (smallest) set, and test * the element against all the other sets, if at least one set does * not include the element it is discarded */ si = setTypeInitIterator(sets[0]); while((encoding = setTypeNext(si,&eleobj,&intobj)) != -1) { for (j = 1; j < setnum; j++) { if (sets[j] == sets[0]) continue; if (encoding == REDIS_ENCODING_INTSET) { /* intset with intset is simple... and fast */ if (sets[j]->encoding == REDIS_ENCODING_INTSET && !intsetFind((intset*)sets[j]->ptr,intobj)) { break; /* in order to compare an integer with an object we * have to use the generic function, creating an object * for this */ } else if (sets[j]->encoding == REDIS_ENCODING_HT) { eleobj = createStringObjectFromLongLong(intobj); if (!setTypeIsMember(sets[j],eleobj)) { decrRefCount(eleobj); break; } decrRefCount(eleobj); } } else if (encoding == REDIS_ENCODING_HT) { /* Optimization... if the source object is integer * encoded AND the target set is an intset, we can get * a much faster path. */ if (eleobj->encoding == REDIS_ENCODING_INT && sets[j]->encoding == REDIS_ENCODING_INTSET && !intsetFind((intset*)sets[j]->ptr,(long)eleobj->ptr)) { break; /* else... object to object check is easy as we use the * type agnostic API here. */ } else if (!setTypeIsMember(sets[j],eleobj)) { break; } } } /* Only take action when all sets contain the member */ if (j == setnum) { if (!dstkey) { if (encoding == REDIS_ENCODING_HT) addReplyBulk(c,eleobj); else addReplyBulkLongLong(c,intobj); cardinality++; } else { if (encoding == REDIS_ENCODING_INTSET) { eleobj = createStringObjectFromLongLong(intobj); setTypeAdd(dstset,eleobj); decrRefCount(eleobj); } else { setTypeAdd(dstset,eleobj); } } } } setTypeReleaseIterator(si); if (dstkey) { /* Store the resulting set into the target, if the intersection * is not an empty set. */ int deleted = dbDelete(c->db,dstkey); if (setTypeSize(dstset) > 0) { dbAdd(c->db,dstkey,dstset); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(REDIS_NOTIFY_SET,"sinterstore", dstkey,c->db->id); } else { decrRefCount(dstset); addReply(c,shared.czero); if (deleted) notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del", dstkey,c->db->id); } signalModifiedKey(c->db,dstkey); server.dirty++; } else { setDeferredMultiBulkLength(c,replylen,cardinality); } zfree(sets); } void sinterCommand(redisClient *c) { sinterGenericCommand(c,c->argv+1,c->argc-1,NULL); } void sinterstoreCommand(redisClient *c) { sinterGenericCommand(c,c->argv+2,c->argc-2,c->argv[1]); } #define REDIS_OP_UNION 0 #define REDIS_OP_DIFF 1 #define REDIS_OP_INTER 2 void sunionDiffGenericCommand(redisClient *c, robj **setkeys, int setnum, robj *dstkey, int op) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *ele, *dstset = NULL; int j, cardinality = 0; int diff_algo = 1; for (j = 0; j < setnum; j++) { robj *setobj = dstkey ? lookupKeyWrite(c->db,setkeys[j]) : lookupKeyRead(c->db,setkeys[j]); if (!setobj) { sets[j] = NULL; continue; } if (checkType(c,setobj,REDIS_SET)) { zfree(sets); return; } sets[j] = setobj; } /* Select what DIFF algorithm to use. * * Algorithm 1 is O(N*M) where N is the size of the element first set * and M the total number of sets. * * Algorithm 2 is O(N) where N is the total number of elements in all * the sets. * * We compute what is the best bet with the current input here. */ if (op == REDIS_OP_DIFF && sets[0]) { long long algo_one_work = 0, algo_two_work = 0; for (j = 0; j < setnum; j++) { if (sets[j] == NULL) continue; algo_one_work += setTypeSize(sets[0]); algo_two_work += setTypeSize(sets[j]); } /* Algorithm 1 has better constant times and performs less operations * if there are elements in common. Give it some advantage. */ algo_one_work /= 2; diff_algo = (algo_one_work <= algo_two_work) ? 1 : 2; if (diff_algo == 1 && setnum > 1) { /* With algorithm 1 it is better to order the sets to subtract * by decreasing size, so that we are more likely to find * duplicated elements ASAP. */ qsort(sets+1,setnum-1,sizeof(robj*), qsortCompareSetsByRevCardinality); } } /* We need a temp set object to store our union. If the dstkey * is not NULL (that is, we are inside an SUNIONSTORE operation) then * this set object will be the resulting object to set into the target key*/ dstset = createIntsetObject(); if (op == REDIS_OP_UNION) { /* Union is trivial, just add every element of every set to the * temporary set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ si = setTypeInitIterator(sets[j]); while((ele = setTypeNextObject(si)) != NULL) { if (setTypeAdd(dstset,ele)) cardinality++; decrRefCount(ele); } setTypeReleaseIterator(si); } } else if (op == REDIS_OP_DIFF && sets[0] && diff_algo == 1) { /* DIFF Algorithm 1: * * We perform the diff by iterating all the elements of the first set, * and only adding it to the target set if the element does not exist * into all the other sets. * * This way we perform at max N*M operations, where N is the size of * the first set, and M the number of sets. */ si = setTypeInitIterator(sets[0]); while((ele = setTypeNextObject(si)) != NULL) { for (j = 1; j < setnum; j++) { if (!sets[j]) continue; /* no key is an empty set. */ if (sets[j] == sets[0]) break; /* same set! */ if (setTypeIsMember(sets[j],ele)) break; } if (j == setnum) { /* There is no other set with this element. Add it. */ setTypeAdd(dstset,ele); cardinality++; } decrRefCount(ele); } setTypeReleaseIterator(si); } else if (op == REDIS_OP_DIFF && sets[0] && diff_algo == 2) { /* DIFF Algorithm 2: * * Add all the elements of the first set to the auxiliary set. * Then remove all the elements of all the next sets from it. * * This is O(N) where N is the sum of all the elements in every * set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ si = setTypeInitIterator(sets[j]); while((ele = setTypeNextObject(si)) != NULL) { if (j == 0) { if (setTypeAdd(dstset,ele)) cardinality++; } else { if (setTypeRemove(dstset,ele)) cardinality--; } decrRefCount(ele); } setTypeReleaseIterator(si); /* Exit if result set is empty as any additional removal * of elements will have no effect. */ if (cardinality == 0) break; } } /* Output the content of the resulting set, if not in STORE mode */ if (!dstkey) { addReplyMultiBulkLen(c,cardinality); si = setTypeInitIterator(dstset); while((ele = setTypeNextObject(si)) != NULL) { addReplyBulk(c,ele); decrRefCount(ele); } setTypeReleaseIterator(si); decrRefCount(dstset); } else { /* If we have a target key where to store the resulting set * create this key with the result set inside */ int deleted = dbDelete(c->db,dstkey); if (setTypeSize(dstset) > 0) { dbAdd(c->db,dstkey,dstset); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(REDIS_NOTIFY_SET, op == REDIS_OP_UNION ? "sunionstore" : "sdiffstore", dstkey,c->db->id); } else { decrRefCount(dstset); addReply(c,shared.czero); if (deleted) notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del", dstkey,c->db->id); } signalModifiedKey(c->db,dstkey); server.dirty++; } zfree(sets); } void sunionCommand(redisClient *c) { sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,REDIS_OP_UNION); } void sunionstoreCommand(redisClient *c) { sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],REDIS_OP_UNION); } void sdiffCommand(redisClient *c) { sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,REDIS_OP_DIFF); } void sdiffstoreCommand(redisClient *c) { sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],REDIS_OP_DIFF); } void sscanCommand(redisClient *c) { robj *set; unsigned long cursor; if (parseScanCursorOrReply(c,c->argv[2],&cursor) == REDIS_ERR) return; if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL || checkType(c,set,REDIS_SET)) return; scanGenericCommand(c,set,cursor); }